Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(j(x, y), y) → g(f(x, k(y)))
f(x, h1(y, z)) → h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) → h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) → h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) → y
i(h2(s(x), y, h1(x, z))) → z
k(h(x)) → h1(0, x)
k(h1(x, y)) → h1(s(x), y)
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic path order with status [19].
Quasi-Precedence:
f2 > g1 > h23 > h12
f2 > g1 > h23 > s1
f2 > k1 > h12
f2 > k1 > 0
f2 > k1 > s1
Status: h23: [2,3,1]
f2: [1,2]